[Time: Three Hours]

[Marks:80]

Please check whether	r you have	got the right	question paper.
----------------------	------------	---------------	-----------------

N.B: 1. Question No.1 is compulsory.

- 2. Attempt any three questions from remaining five questions.
- 3. Assume suitable data if necessary and state it clearly.
- 4. Figures to right indicates full marks.

Q.1.	Solve any five questions (a) What is linear transformation? Define kernel and 'range as applied to linear transformation.	20
	(b) Explain white noise process. Write expressions for autocorrelation and PSD of white noise process.	
	(c) What is correlation Matrices of stationary process?	
	(d) What is Unbiased Estimator?	
	(e) State the properties of probability density and distribution function?	
	(f) State the Kalman filtering problem also, state the important assumptions about the underlying state variable system	
0.2	(a) Check whether following vectors are linearly independent	8
Q.2.	1) $P_1 = [2, -3, 4]^T$ 2) $P_2 = [-1, 6, -2]^T$ 3) $P_3 = [1, 6, 2]^T$	0
	(b) What is ill-conditioned matrix? Define matrix condition number. A matrix has a	6
	large condition number, What does this indicate?	
	(c)What is pseudo inverse and state its properties.	6
Q.3.	(a) Let x(n) be a real -valued random process generated by the system	8
	$x(n) = ax(n-1) + w(n)$ $n \ge 10$ $x(-1) = 0$	
	Where w(n) is a stationary random process with mean μ_w and $r_w(l) = \sigma_w^2 \delta(l)$	
	The $x(n)$ process is first order autoregressive and $w(n)$ is white noise process.	
	Determine μ_x of x(n) and comment on its stationary. (b) Describe stationary process in frequency domain?	7
	(c) Determine the PSD of a zero mean WSS process x(n) with	5
	$r_x(l) = a^{ l }, -1 \le a \le 1.$	
0.4	(a) Derive the Random signal response for an LTI system.	8
Q.T.	(b) Let w(n) be zero mean, uncorrelated Gaussian random sequence with variance variance	12
	$\sigma^2(n)=1$	
	i) Characterize the random sequence w(n)	
200	ii) Define $x(n) = w(n) + w(n-1)$, $-\infty < n < \infty$ Determine mean	
25.00	and	
	autocorrelation of x(n). Also characterize x(n)	
	(a) Consider the observation	8
6	x[n] = A + w[n] $n = 0, 1,, N-1$	
	Where A $(-\infty < A < \infty)$ is parameter to be estimated and w(n) is WGN. The estimator for	
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	average value of x[n] is $\hat{A} = \frac{1}{N} \sum_{n=0}^{N-1} x[n]$	
San William	Find the mean of estimator. Is the estimator biased?	
	(b) State CRLB theorem	5
	(c) State the minimum variance criteria for the estimator	7

Q.6. (a) Describe Kalman filter I - Bayes approach. (b) State the uses of Gram-Schmidt orthogonalization procedure.	lure?
(c) Explain application of Discrete Karhunen-Lo' eve Transfordiagram. Explain scheme for selection of reduced basis.	orm in signal coding using block

Q. P. Code: 25232

Duration-3hrs Marks -80 N.B. i) Question no.1 is compulsory ii) Solve any three from the remaining questions 1A Define NGN and mention the key features of NGN 5 Compare the role of IPV4 and IPV6 in NGN. C Explain QOE in NGN. 5 D Explain the role of SIP in VOIP. 5 2A How MPLS packet routing is different from traditional packet routing. Give the Concept 10 of VPN. What are the major threats to Telecom Industry? 10 **3A** Analyse the concept of SDR and Cognitive Radio. 10 B Explain the concept of IOT with an example. 10 Explain the naming, numbering & addressing schemes in NGN. 10 What are the IDs used in TISPAN, NGN? How are NGN IDs administered? 10 Explain the mobile IPTV service with challenges & applications. 10 Describe the NGN security mechanisms covering AAA. 10 Write notes on [any two] 20 a) FMC b) migration of PSTN to NGN c) Diameter protocol d) IMS
